Advanced Embedded Technology

curriculum

Ministry of Micro, Small and Medium Enterprises, New Delhi (MSME-Technology Centre)

COURSE NAME: PIC MICROCONTROLLER

COURSE CODE: AET01

COURSE OUTCOMES:

After completion of course Student should be able to:

- Understand the basics of Microcontroller
- Understand architecture of PIC microcontroller
- Ability to interface with various peripherals
- Understand the product requirement based on
- Understand the concept of peripherals

THEORY HOURS: 35

PRACTICAL HOURS: 35

THEORY MARKS: 40

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks	
UNIT-I	Introduction to 8-bit PIC microcontroller	After completion of unit student should be able to • The candidate will be able to	 Introduction to PIC Microcontroller Architecture of PIC MCU Series Application of PIC Microcontroller 	10	10	
UNIT-II	Introduction to PIC 18F series MCU	 understand embedded hardware, design for telecom devices and equipment, core programming of telecom devices and equipment The candidate will be able to use basic communication 	 Introduction to PIC MCU Series Introduction to PIC18f4550 Family Architecture of PIC18f4550 Understanding the instruction set used for programming. Understanding method for writing program and debugging method 	15	15	
UNIT-III	Interfacing with Peripherals	 protocols, understanding of circuits and architectures Architecture of 	 Understanding the concept of peripherals Types of Peripherals 	10	15	

Microcontrollers	Introduction to internal peripherals of PIC
Basic Peripherals	microcontroller
Input & Output devices	Interfacing with internal peripherals such as
Working with sensors	Timer/Counter, Serial Communication,
	Interrupt, CCP, EEPROM memory, ADC etc.
	Interfacing with external peripherals such as
	LED, LCD(Liquid Crystal Display), SSD(Seven
	Segment Display), DAC, RTC etc

COURSE NAME: EMBEDDED C/C++

COURSE CODE: AET02

COURSE OUTCOMES:

After completion of course Student should be able to:

- Understand the basic concept of C/C++ programming language.
- Understand the method of writing program in C/C++.
- Understand the concept of Embedded C/C++.
- Ability to create own C/C++ program.

THEORY HOURS: 35

PRACTICAL HOURS: 35

THEORY MARKS: 40

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks	
UNIT-I	Introduction to C	 After completion of unit Student should be able to The candidate will be able to prepare and maintain a knowledge-base of the known 	 Introduction to Programming Language Concept of C/C++ Use of Decision Making Statement Use of structure and pointer Use of Arrays and Functions 	5	10	
UNIT-II	Introduction to MPLABX compiler	 problems The candidate able to develop system by interfacing as well 	 Introduction to MPLABX Compiler Methods of Compiling and Debugging Execution of program file on hardware 	10	10	
UNIT-III	Embedded C - Porting and delay with PIC	 as developing the hardware. The candidate will be able to understand embedded 	 Introduction to Embedded C/C++ Initialization of program using microcontroller registers Understanding the concept of port 	5	10	

SEMESTER: I

COURSE NAME: COMMUNICATION PROTOCOL & IMPLEMENTATION

COURSE CODE: AET03

COURSE OUTCOMES:

After completion of course Student should be able to:

- Understand the interfacing with various communication protocol implementation
- Understand the implementation method for communication protocols
- Understanding interfacing of different peripheral using communication protocol

PRACTICAL HOURS: 35

THEORY MARKS: 40

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks	
UNIT-I	Introduction to communication protocols	After completion of unit Student should be able to • The candidate will be able to understand embedded hardware, design for telecom devices and equipment, core	 Introduction to Communication Protocol I2C - Interfacing with micro controller using bit-banking method, I2C devices – RTC, Memory, ADC-DAC, Port-Expander, SPI (Serial Peripheral Interface), Bluetooth, Wi-Fi and RFID. 	15	20	
UNIT-II	Interfacing with various communication protocols	 programming of telecom devices and equipment The candidate will be able to use basic communication protocols, understanding of 	 Understanding Serial Communication Bluetooth Communication SPI Interface ZigBee 	20	20	

 circuits and architecture used in telecom systems devices embedded system ,syste design modules, concept circuit design, computer architecture, design and implementation of embedded software system 	and I2C Infrared M RFID S of GSM GPS PDH/SDH/Ethernet	
--	--	--

COURSE NAME: ROBOTICS-INTERFACING WITH MOTORS AND SENSORS

COURSE CODE: AET04

COURSE OUTCOMES:

After completion of course Student should be able to:

- Working with Motors & Sensors
- Understand the types of motors & sensors
- Ability to interface motors & sensors with microcontroller

THEORY HOURS: 35

PRACTICAL HOURS: 35

THEORY MARKS: 40

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks	
UNIT-I	Introduction to ROBOTICS	After completion of unit Student should be able to • Understand robotics	 Introduction to Robotics Application of using robots Usage of motors & sensors in Robotics 	10	10	
UNIT-II	Concepts of DC Motor	 mechanism Concept of robotics Application using robot Types of motors & sensors Understand interfacing of motors & sensors with microcontroller Application of motors & sensors in robotics field Usage of motors & sensors in 	 DC Motor in Robotics Gear fundamentals and types of gears Characteristics of DC Motors Operation of DC Motor Electrical model of DC Motor Characteristics curves of DC Motor Types of DC Motors Hardware interface of DC Motors Speed control of DC Motor Software driver for DC Motor 	15	10	

		robotics vehicle and product	Speed measurements			
			Applications of dc motors			
UNIT-III	Concept of		Introduction to Stepper Motor	5	10	
	Stepper Motor		Types of Stepper Motor			
			Operation of Stepper Motor			
			 Applications of Stepper motor 			
			Hardware interface for driving Stepper			
			motor			
			 Software driver for Stepper motor 			
UNIT-IV	Concept of		Concept of servo motor	5	10	
	Servo Motor		Use of servo motor			
			Stepper vs. servo			
			 How does servo motor works? 			
			Futaba servo s3003			
			Applications of servo motor			
			Hardware interface for driving servo motor			
			 Software driver for servo motor 			

COURSE NAME: ARM- Advanced RISC Machine (LPC2148)

COURSE CODE: AET05

COURSE OUTCOMES: The aim of this course student should be able to:

- Understand the knowledge of processor
- Understand the interfacing with peripherals
- Ability to generate application based on industry requirements.
- Usage of material for generating product.

THEORY HOURS: 35

PRACTICAL HOURS: 35

THEORY MARKS: 40

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks	
UNIT-I	Introduction to ARM processor	 At the end of this Unit the student should be able to: The candidate will be able to prepare and maintain a knowledge-base of the known 	 Introduction to ARM Processor Architecture of ARM7TDMI Processor Advantages of 32-bits over 8-bits controller 	10	10	
UNIT-II	ARM-7 TDMI Core architecture	 problems The candidate able to develop system by interfacing as well as developing the hardware. The candidate will be able to use 	 Architecture of ARM7TDMI Processor Application of using ARM7TDMI Processor Interfacing with various peripherals 	15	10	
UNIT-III	LPC 2148 ARM with in-built peripherals	 peripherals of ARM processor for different applications The candidate will be able to understand the concept of instruction and execution The candidate will be able to 	 LPC 2148 ARM with in-built peripherals ADC DAC RTC UART Timer/Counter 	5	10	

		 produce devices based on ARM Processor and can use it in various field as per the requirement. The candidate will be able to use different series of ARM Processor 	 Interrupts PWM SPI based programming LCD interfacing, Introduction to LPC1768 (Cortex-M3 series). 			
UNIT-IV	Introduction to LPC1768 (Cortex-M3 series).	according to requirement.	 Introduction to LPC1768 (Cortex-M3 series). Architecture of LPC1768 (Cortex-M3 series) core. Interfacing with peripherals of LPC1768(Cortex-M3 series) Application of LPC1768 (Cortex-M3 series). 	5	10	

COURSE NAME: Concept of RTOS

COURSE CODE: AET06

COURSE OUTCOMES: The aim of this course student should be able to:

- Explain the Real time operating system concept.
- Know about architecture of kernel.
- Understand the concept of Process scheduling, task execution etc.
- Understand the use of operating system into microcontroller.

THEORY HOURS: 35

PRACTICAL HOURS: 35

THEORY MARKS: 40

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks	
UNIT-I	Comparison between traditional O.S and RTOS	At the end of this Unit the student should be able to • design flow involved in design stages , design, develop, test, debug software components	 Introduction to real time operating system Understanding the concept of RTOS Application of Real time Operating System Comparison between OS and RTOS 	10	10	
UNIT-II	Understanding Kernel	 software module library, system testing, product verification and validation, software programming 	ting, product verification and Architecture of Kernel	15	10	
UNIT-III	Scheduling policies	languages such as C, C++, operating system such as windows, Linux , system level integration, software	 Execution method for task Type of scheduling Policies for executing task 	5	10	
UNIT-IV	Programming in RTOS	fundamentals such object-oriented design, data structures, algorithm design end-product application, i.e., industry for which embedded system is designed, Schematics and data sheets	 Building block policies used in RTOS Programming Concept used to execute task Different task scheduling while programming for RTOS 	5	10	

understand scheduling process and		
policies required to execute task		
• understand the application of using		
real time operating system		

COURSE NAME: VLSI Design with FPGA / CPLD

COURSE CODE: AET07

COURSE OUTCOMES: The aim of this course student should be able to:

- Ability to simulate using FPGA blocks.
- Understand Programming using FPGA/CPLD concept
- Understand simulation using Xilinx ISE design
- Ability to implement program based on application

THEORY HOURS: 35

PRACTICAL HOURS: 35

THEORY MARKS: 40

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks	
Unit - I	CPLD / FPGA architecture	 At the end of this Unit the student should be able to: Understand the concept of VLSI design Types of designing for e.g. Digital design or analog design and their respective design flow Understanding the process of partitioning the design into different blocks Selection of design type such as application specific integrates circuit(ASIC), Field-programmable gate arrays(FPGA) and complex programmable logic device(CPLD) Use of design languages such as hardware design language(HDL), e.g. 	 CPLD / FPGA architecture, Programming and Simulation with Xilinx ISE, VHDL programming- Full Adder Introduction to complete system architecture such as memory, microcontroller, microprocessor, memory blocks, timers and oscillators, interfaces and power management Introduction to design flow for the specific system Introduction to VHDL programming language 	10	10	
UNIT-II	Programming and Simulation with Xilinx ISE	Verilog, VHDL, High level language such as C	Types of languagesTypes of designing for e.g. Digital	15	10	

UNIT-III	VHDL programming	 Understanding the code required for design Creation of code, verification, testing software Testing various examples on the system Understanding the synthesis and simulation process of code Building simulation module as per system specification for e.g. VHDL model for ASIC design Understanding types of design as per sections in VLSI processor such as high 	 design or analog design and their respective design flow Use of design languages such as hardware design language(HDL), e.g. Verilog, VHDL, High level language such as C Understanding the code required for design Introduction to design flow for the specific system Introduction to VHDL programming language Creation of code, verification, testing 	5	10	
		 level design, operative part design, control part design, memory design etc. Functioning and specifying the tools used for design as per requirement 	 software Testing various examples on the system Understanding the synthesis and simulation process of code 			
UNIT-IV	Programming through JTAG on Xilinx Spartan 3 Board	 Analysis of Design code by verification engineer Installation process of design code into hardware and verifying it 	 Building simulation module as per system specification for e.g. VHDL model for ASIC design Understanding types of design as per sections in VLSI processor such as high level design, operative part design, control part design, memory design etc. Functioning and specifying the tools used for design as per requirement Analysis of Design code by verification engineer Installation process of design code into hardware and verifying it 	5	10	

COURSE NAME: PCB Designing

COURSE CODE: AET08

COURSE OUTCOMES: The aim of this course student should be able to:

- Developing schematic and creating PCB layout, converting them to Gerber format using CAD and other software tools, suitable for production and assembly process.
- Understand frame the circuit specifics before drawing, by designing schematics for the circuit.
- Ability to create a new project schematic on the designing software
- Ability to add components, component values, connection between components and power connection on it
- Ability to Design PCB for different electronics products

THEORY HOURS:35 PRACTICAL HOURS:35

THEORY MARKS: 40 PRACTICAL MARKS: 60

Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks
UNIT-I	Schematic design with circuit simulation	 At the end of this Unit the student should be able to Developing schematic and creating PCB layout, converting them to Gerber format using CAD and other software tools, suitable for production and assembly process. discuss with the systems analyst on the customer requirement and get inputs analyses the requirements of customer suggest any further changes to the requirement generate bill of materials (BOM) 	 Schematic design with circuit simulation, creating footprints for customized component packages, Component Placement as per requirement, layout design for Single layer and Multilayer PCB, File generation for film making and PCB manufacturing. 	10	15
UNIT-II	File generation for film making and PCB manufacturing.		 Develop schematics Convert schematics to PCB layout Create Gerber file and send to manufacturer Give the detailed instructions and information to be sent to manufacturer Achieve productivity and quality 	15	15

UNIT-III	Developing schematics	 simultaneously with the schematic's creation select the components in the circuit by analysing the maximum operating voltages and current levels of each node of the circuit while considering tolerance criteria reconsider based on availability, budget and size after selecting electrically satisfactory components keep the BOM up to date with the schematic at all times with all details such as quantity, reference designators, manufacturer part number, value of ohms, farads, etc. and PCB footprint for each component 	 standards frame the circuit specifics before drawing, by designing schematics for the circuit create a new project schematic on the designing software add components, component values, connection between components and power connection on it run a check to see if there are any mistakes to be fixed ensure the schematic to be as per the original PCB design lay out clearly and logically so that it is easier at the designing stage make sure the trace, pads and via are the same sizes as the original design make short notes on the schematics in conformance with design requirements 	10	10	
			• make short notes on the schematics in			

COURSE NAME: Python Programming on Raspberry Pi

COURSE CODE: AET09

COURSE OUTCOMES: The aim of this course student should be able to:

- Understand the knowledge of Raspberry Pi
- Understand the interfacing with peripherals
- Ability to generate application based on industry requirements.
- Usage of material for generating product.

THEORY H	IOURS: 35	PRACTICAL HOURS: 35	THEORY MARKS: 40	PRACTICAL	MARKS: 60
Unit No.	Unit Name	Unit level outcomes	Contents (chapters/topics)	TH hours	Marks
UNIT-I	Introduction to Raspberry Pi,	 At the end of this Unit the student should be able to understand the work flow of the company's design process interact with the lead engineer in order to understand the work 	 Introduction to Raspberry Pi Comparison with Microcontroller and Raspberry Pi, Architecture of ARM11 processor Pipelining method to execute the instruction 	10	10
UNIT-II	Python Programming	 schedules, shifts and delivery dates plan work activities based the work flow and deliverables Understand broad level activities involved in the stages of design List the various department to interact with for completing the work Minimize absenteeism and report 	 Introduction to Python programming Basic concept of Programming Method of decision making, looping, branching etc Declaration of functions, array, pointer etc Python programming using Raspberry Pi Format to write the code related application 	15	10
UNIT-III	Peripheral Interfacing using	to work on timeThe candidate will be able to	Raspberry Pi with different peripherals Port Programming 	5	10

	Raspberry Pi	 understand the concept of instruction and execution The candidate will be able to produce devices based on Raspberry Pi Understand Putty Login Method to connect device with laptop 	 Led Interfacing LCD interfacing UART Bluetooth Interfacing of Sensors: Ultrasonic Sensor, IR Sensor etc. Interfacing with Motors: DC Motor, Stepper Motor, Servo Motor etc. 			
UNIT-IV	Remote Login Method : PuTTY, Hyperterminal, Ethernet	 Understand the programming concept using Raspberry Pi 	 Remote login method to interlink Raspberry Pi with laptop Debugging and executing programs using Raspberry Pi 	5	10	

COURSE NAME: PROJECT

COURSE CODE: AET09

COURSE OUTCOMES: The aim of this course student should be able to:

- Concepts to address specific management needs at the individual, team, division and/or organizational level
- Practical applications of project management to formulate strategies allowing organizations to achieve strategic goals
- A perspective of leadership effectiveness in organizations
- Team-building skills required to support successful performance
- Critical-thinking and analytical decision-making capabilities to investigate complex business problems to propose project-based solutions
- Skills to manage creative teams and project processes effectively and efficiently